Finding

Paper

Citations: 229

2014

Abstract

Selecting the number of different classes that will be assumed to exist in the population is an important step in latent class analysis (LCA). The bootstrap likelihood ratio test (BLRT) provides a data-driven way to evaluate the relative adequacy of a (K – 1)-class model compared to a K-class model. However, very little is known about how to predict the power or the required sample size for the BLRT in LCA. Based on extensive Monte Carlo simulations, we provide practical effect size measures and power curves that can be used to predict power for the BLRT in LCA given a proposed sample size and a set of hypothesized population parameters. Estimated power curves and tables provide guidance for researchers wishing to size a study to have sufficient power to detect hypothesized underlying latent classes.

Authors

John J. Dziak, S. Lanza, Xianming Tan

Journal

Structural Equation Modeling: A Multidisciplinary Journal

copied to clipboard

copied to clipboard