Finding
Paper
In Vitro Trial
Citations: 64
Abstract
The authors have recently reported the fabrication of superabsorbent cryogels decorated with silver nanoparticles (PSA/AgNP cryogels) that demonstrate rapid water disinfection. This paper provides a systematic elucidation of the bactericidal mechanisms of AgNPs (silver nanoparticles), both generally and in the specific context of cryogels. Direct contact between the PSA/AgNP cryogel interface and the bacterial cells is required to accomplish disinfection. Specifically, the disinfection efficacy is closely correlated to the cell-bound Ag concentration, which constitutes >90% of the Ag released. Cells exposed to PSA/AgNP cryogels show a significant depletion of intracellular adenosine triphosphate (ATP) content and cell-membrane lesions. A positive ROS (reactive oxygen species) scavenging test confirms the involvement of ROS (·O2(-), H2O2, and ·OH) in the bactericidal mechanism. Furthermore, exposed bacterial cells show an enhanced level of thiobarbituric acid reactive substances, indicating the occurrence of cell-membrane peroxidation mediated by ROS. In addition, this study reveals that both Ag(+) and Ag(0) are involved in the bactericidal mechanism of AgNPs via tests conducted using PSA cryogels with bound Ag(+) ions (or PSA/Ag(+) cryogels without reducing Ag(+) to Ag(0)). Significantly, bacterial cells exposed to PSA/Ag(+) cryogels did not show any cell-membrane damage even though the former had a higher cell-bound Ag concentration than that of the PSA/AgNP cryogels, thus indicating the differential action of Ag(+) and Ag(0).
Authors
Siew-Leng Loo, W. Krantz, A. Fane
Journal
Environmental science & technology