Finding
Paper
Citations: 98
Abstract
The genetic and biochemical mechanisms by which Mycobacterium tuberculosis senses and responds to the complex environment that it encounters during infection and persistence within the host remain unknown. In a number of bacterial species, the Kdp signal transduction pathway appears to be the primary response to environmental osmotic stress, which is primarily mediated by K+ concentration in bacteria. We show that kdp encodes for components of a mycobacterial signalling pathway by demonstrating the K+ dependence of kdpFABC expression in both M. tuberculosis H37Rv and Mycobacterium smegmatis. To identify proteins of M. tuberculosis that participate in this signalling pathway, we used the N‐terminal sensing module of the histidine kinase KdpD as bait in a yeast two‐hybrid screen. We show that the sensing domain of KdpD interacts specifically with two membrane lipoproteins, LprJ (Rv1690) and LprF (Rv1368). Overexpression of lprF and lprJ alleles in mycobacterial kdpF–lacZ reporter strains enabled us to identify alleles that modulate kdpFABC expression. By exploiting the yeast three‐hybrid system, we have found that the histidine kinase domain of KdpD forms ternary complexes with LprF and LprJ and the sensing module of KdpD. Our results establish a role for membrane proteins in the Kdp signalling pathway and suggest that LprF and LprJ function as accessory or ligand‐binding proteins that communicate directly with the sensing domain of KdpD to modulate kdp expression.
Authors
A. Steyn, J. Joseph, B. Bloom
Journal
Molecular Microbiology