Finding
Paper
Abstract
In this study, passivated and unpassivated nanocrystalline ZnS with varying Mn2+ concentrations (ZnS:Mn) were synthesized and their photoacoustic (PA) and photoluminescence (PL) characteristics were studied. The PA intensity peak for the nanocrystalline ZnS was found to be blue-shifted compared with that for the bulk material due to quantum confinement effects. The difference of the PA signals of doped ZnS and undoped ZnS yielded the Mn2+ optical absorption spectra. The intensity of the PA peak increased linearly with Mn concentration. The PL spectra showed a peak position at 2.08 eV corresponding to the d–d transition of Mn2+. For the unpassivated sample, a decrease in the PL intensities for higher Mn concentrations was observed. This could be attributed to concentration quenching. Addition of acrylic acid as a passivator led to an increase in PL intensity for all Mn concentrations and prevented the decrease in the PL intensity for higher Mn concentrations. These could be attributed to the surface passivation, which reduces the nonradiative recombination probabilities, thus increasing PL intensities.
Authors
A. Cruz, Q. Shen, T. Toyoda
Journal
Japanese Journal of Applied Physics