Finding
Paper
Citations: 1
Abstract
Nonadiabatic processes play an important role at energies near or higher than conical intersection of adiabatic potential energy surfaces in chemical reactions. In this work, dynamics of the nonadiabatic H + NaD reaction at low temperatures are studied by using the quantum wave packet method based on an improved L-shaped grid. The nonadiabatic H + NaD reaction has two exothermic reaction channels: Na(3s) + HD and Na(3p) + HD; the latter can only occur via nonadiabatic transition. The dynamics results show that the product branching of the H + NaD reaction at collision energies ranging from 20 to 80 cm-1 is controlled by stereodynamics. The Na(3s) and Na(3p) reaction channels occur through collinear collision and side-on collision, respectively. When the collision energy is lower than 20 cm-1, the resonance-mediated reaction mechanism is dominant in both the Na(3s) and Na(3p) reaction channels.
Authors
Bayaer Buren, Maodu Chen
Journal
The journal of physical chemistry. A