Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance.
Published 2008 · M. Gómez-Cabrera, Elena Doménech, M. Romagnoli
The American journal of clinical nutrition
800
Citations
46
Influential Citations
Abstract
BACKGROUND Exercise practitioners often take vitamin C supplements because intense muscular contractile activity can result in oxidative stress, as indicated by altered muscle and blood glutathione concentrations and increases in protein, DNA, and lipid peroxidation. There is, however, considerable debate regarding the beneficial health effects of vitamin C supplementation. OBJECTIVE This study was designed to study the effect of vitamin C on training efficiency in rats and in humans. DESIGN The human study was double-blind and randomized. Fourteen men (27-36 y old) were trained for 8 wk. Five of the men were supplemented daily with an oral dose of 1 g vitamin C. In the animal study, 24 male Wistar rats were exercised under 2 different protocols for 3 and 6 wk. Twelve of the rats were treated with a daily dose of vitamin C (0.24 mg/cm2 body surface area). RESULTS The administration of vitamin C significantly (P=0.014) hampered endurance capacity. The adverse effects of vitamin C may result from its capacity to reduce the exercise-induced expression of key transcription factors involved in mitochondrial biogenesis. These factors are peroxisome proliferator-activated receptor co-activator 1, nuclear respiratory factor 1, and mitochondrial transcription factor A. Vitamin C also prevented the exercise-induced expression of cytochrome C (a marker of mitochondrial content) and of the antioxidant enzymes superoxide dismutase and glutathione peroxidase. CONCLUSION Vitamin C supplementation decreases training efficiency because it prevents some cellular adaptations to exercise.