T. Mongan

Jan 23, 2008

Citations

3

Citations

Journal

arXiv: General Physics

Abstract

The Standard Model (SM) is a successful approach to particle physics calculations. However, there are indications that the SM is only a good approximation to an underlying non-local reality involving fundamental entities (preons) that are not point particles. Furthermore, our universe seems to be dominated by a vacuum energy/cosmological constant. The holographic principle then indicates only a finite number of bits of information will ever be available to describe the observable universe, and that requires a holographic preon model linking the (0,1) holographic bits to SM particles. All SM particles have charges 0, 1/3, 2/3 or 1 in units of the electron charge, so the bits in a holographic preon model must be identified with fractional electric charge. Such holographic charged preon models require baryon asymmetry and also suggest a mechanism for stationary action. This paper outlines a holographic charged preon model where preons are strands with finite energy density specified by bits of information identifying the charge on each end. In the model, SM particles consist of three strands with spin states corresponding to wrapped states of the strands. SM particles in this wrapped preon model can be approximated by preon bound states in non-local dynamics based on three-preon Bethe-Salpeter equations with instantaneous three-preon interactions. The model can be falsified by data from the Large Hadron Collider because it generates baryon asymmetry without axions, and does not allow more than three generations of SM fermions.

Text copied to clipboard

copied to clipboard