Paper
HYPER-FINE STRUCTURE IN SPECTRAL LINES- ESPECIALLY THOSE OF SINGLY IONIZED PRASEODYMIUM.
Published Aug 15, 1929 · J. Ruedy, R. Gibbs, H. E. White
Proceedings of the National Academy of Sciences of the United States of America
2
Citations
0
Influential Citations
Abstract
Fine structure in spectral lines has been reported from time to time for a few lines in each of several elements. In the majority of cases this complexity has been observed in the case of lines arising from the neutral atom, though a few lines, identified as belonging to the spectra of singly ionized helium, aluminum and lanthanum, have also been found to consist of two or more components. So far as we are aware no line definitely identified as belonging to the spectra of an element in a stage of ionization higher than the first has been reported as having more than a single component. This can hardly be taken to mean necessarily that lines radiated by atoms in the higher states of ionization are, on the whole, simpler than those in the arc and first spark spectra. The spectra of highly ionized atoms are comparatively difficult to produce and many of the stronger lines are found in regions of the spectrum where high dispersion apparatus cannot be so readily utilized. All but the more recent observations of complex structure are mentioned and discussed in reports by Ruark1 and Chenault,2 and by Meggers and Burns.3 Bach and Goudsmit4 used very high precision apparatus in studying the Zeeman effect upon certain hyper-fine lines of bismuth. McNair5 has studied the Zeeman patterns of the hyper-fine lines in the 2537 line of mercury. Schuler' has observed close components in certain lines of lithium and in the D lines of sodium. King7 in making a careful study and classification of lines in the spectra of praseodymium has pointed out the complex structure of many of these lines, the vast majority of which are believed to belong to the first spark spectrum. Very recently King8 has reported the existence of hyper-fine structure in lines from several other rare-earth elements. 6i42 PROC. N. A. S.
HYPER-FINE STRUCTURE IN SPECTRAL LINES, ESPECIALLY OF SINGLY IONIZED PRASEODYMIUM.
Full text analysis coming soon...