Paper
Inhibition of dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells by tetrahydrocortisol.
Published Apr 1, 1996 · A. Clark, D. Lane, K. Wilson
Investigative ophthalmology & visual science
70
Citations
1
Influential Citations
Abstract
PURPOSE To determine the cellular mechanism of action of the intraocular pressure (IOP) lowering steroid tetrahydrocortisol (THF). METHODS Tetrahydrocortisol was evaluated for glucocorticoid antagonist activity using in vitro and in vivo assays. Systemically administered THF was evaluated for its ability to inhibit dexamethasone-induced body weight loss and systemic hypertension in rats. In vitro receptor antagonism was tested using the supernatant fraction of IM9 cells as the source of soluble glucocorticoid receptor in 3H-dexamethasone displacement binding assays. In addition, six different primary human trabecular meshwork (TM) cell lines were cultured for 0 to 14 days in the absence or presence of dexamethasone (10(-7) M) and/or THF (10(-6) to 10(-8) M). The effects of these steroids on the TM cytoskeleton were determined by epifluorescent microscopy and by transmission electron microscopy. RESULTS Tetrahydrocortisol was unable to inhibit the dexamethasone (DEX)-induced systemic hypertension and decrease in body mass in rats and was unable to displace 3H-DEX from the soluble human glucocorticoid receptor. However, THF inhibited the DEX-induced formation of cross-linked actin networks in cultured human TM cells in a progressive and dose-dependent manner (IC50 = 5.7 x 10(-7) M). Dexamethasone caused changes in the TM cell microtubules that were reversed partially by concomitant treatment with THF. Tetrahydrocortisol alone appeared to increase microfilament bundling in TM cells. CONCLUSIONS Tetrahydrocortisol was not a glucocorticoid antagonist at the level of the classical glucocorticoid receptor and did not appear to antagonize systemically mediated glucocorticoid activity in the rat. Tetrahydrocortisol inhibited DEX-induced changes in the TM microfilaments and microtubules. These results may explain partially the IOP lowering activity of THF because glucocorticoid-mediated changes in the TM cytoskeleton have been proposed to be involved in the generation of ocular hypertension.
Tetrahydrocortisol partially lowers intraocular pressure by inhibiting dexamethasone-induced changes in human trabecular meshwork cells, potentially explaining its ocular hypertension-reducing activity.
Full text analysis coming soon...