Paper
Why neuroplasticity?
Published 2012 · Deborah S. Larsen
Journal of neurologic physical therapy : JNPT
1
Citations
0
Influential Citations
Abstract
T he Neurology Section unveiled its newest Regional Course at the Combined Sections Meeting of the APTA in Chicago this February, titled “Neurologic Practice Essentials: Exploring Neuroplasticity and Its Rehabilitation Implications.” The concept of neuroplasticity has long influenced scientific investigators and therapeutic interventions, yet there are still those who question the relevance of neuroplasticity to physical therapy practice. So this perspective addresses the question “Why is neuroplasticity important to clinicians in neurologic physical therapy practice?” First, what is neuroplasticity? Simply, it refers to the capacity of the nervous system to change, and this change is not unique to central nervous system (CNS) injury or as a response to rehabilitation protocols. Neurons have the capacity to change their structure and function, according to the inputs generated by activity and learning; in fact, neuronal change is the basis for memory and behavioral change, resulting from experience. Plasticity takes place constantly, whether we are undergoing intense training or doing absolutely nothing. Furthermore, plasticity can be positive (adaptive) or negative (maladaptive).1 After CNS injury, neuroplasticity is the key to functional recovery; it also underlies many aspects of motor dysfunction (spasticity, synergistic movements). Therefore, it is imperative that we, as clinicians, understand the impact of physical therapy on neural reorganization during recovery. Much of neuroscience research over the past 3 decades—and, more recently, neurologic physical therapy research—has focused on understanding the mechanisms of recovery as well as its drivers so that we can maximize the effects of our treatments. So, what do we know about neuroplasticity, following CNS injury? First, some degree of functional recovery is achieved by neurons adjacent to the damaged area assuming control of lost functions (for example, neurons typically controlling elbow/shoulder function now control hand function).2 Second, some recovery is manifested by increased control from the contralesional hemisphere,3,4 yet better recovery is typically associated with a return to ipsilesional control.5 Not surprisingly, there is much that we don’t know about the capacity of the nervous system to change, using silent networks of neurons or other methods of reorganization. However, we
Neuroplasticity is crucial for functional recovery after CNS injury, and understanding its impact on physical therapy can enhance recovery outcomes.
Full text analysis coming soon...