G. Martin
Jul 17, 2018
Citations
3
Citations
Journal
Journal of the London Mathematical Society
Abstract
Earlier work introduced a geometrically natural probability measure on the group of all Möbius transformations of the hyperbolic plane so as to be able to study ‘random’ groups of Möbius transformations, and in particular random two‐generator groups. Here we extend these results to consider random punctured tori. These Riemann surfaces have finite hyperbolic area 2π and fundamental group, the free group of rank 2. They can be obtained by pairing (identifying) the opposite sides of an ideal hyperbolic quadrilateral. There is a natural distribution on ideal quadrilateral given by the cross ratio of their vertices. We identify this distribution and then calculate the distributions of various geometric quantities associated with random punctured tori such as the base of the geodesic length spectrum and the conformal modulus, along with more subtle things such as the distribution of the distance in Teichmüller space to the central ‘square’ punctured torus.