G. Leonelli, M. Pelfini
Jul 1, 2013
Citations
8
Citations
Journal
Boreas
Abstract
Debris‐covered glaciers may host several biological forms that colonize the debris cover, especially if the glacier tongue reaches sufficiently low altitudes (down to about 1700 m a.s.l. at Miage Glacier, Western Italian Alps) thus allowing also tree growth. Supraglacial trees colonizing the debris‐covered tongue are strongly influenced in growth and distribution by substrate characteristics and instability. The tree age distribution at Miage Glacier presents a positive gradient towards the glacier terminus, which was found to be related to the decreasing glacier surface velocity. By analysing tree‐ring growth anomalies on the glacier and at a control site at the tree line over the 20‐year period 1987–2006, it was found that trees growing on the glacier presented the highest percentages of abrupt growth changes (AGCs)>+70% with respect to the four previous years. Considering tree displacement on the glacier surface over the same 20‐year period and the recorded AGCs, it was found that the central‐lower portion of the southern lobe towards the margins was the most unstable. The temporal analysis of AGC>+40% confirmed a period of higher glacier surface instability, reaching a maximum in the years 1988 (on lobe S) and 1989 (on lobe N), probably related to the passage of a kinematic wave in the glacier tongue. Our analysis suggests that supraglacial trees hold useful information on the glacier tongue dynamics and that both AGC>+70% and AGC>+40% may be used as a proxy for substrate instability in spatio‐temporal reconstructions in the Alpine environment.