Paper
Synthesis, in vitro anti-breast cancer activity, and intracellular decomposition of amino acid methyl ester and alkyl amide phosphoramidate monoesters of 3'-azido-3'-deoxythymidine (AZT).
Published Jun 1, 2000 · V. Iyer, G. Griesgraber, Matthew R. Radmer
Journal of medicinal chemistry
45
Citations
0
Influential Citations
Abstract
We report the synthesis and anticancer activity of a series of AZT phosphoramidate monoesters containing amino acid methyl ester (3a-11a) and N-alkyl amide (3b-11b, 9c-9f) moieties. The aromatic amino acid methyl esters were found to be more cytotoxic than the aliphatic analogues toward MCF-7 cells (human pleural effusion breast adenocarcinoma cell line). A marked stereochemical preference for the L-amino acid stereochemistry was also observed in MCF-7 cells. There was no consistent enhancement of cytotoxicity of the methyl amides over the corresponding methyl esters. AZT and the two AZT aromatic amino acid methyl ester phosphoramidates 8a and 9a were found to be more cytotoxic toward MCF-7 cells than to CEM cells (human T-cell lymphoblastic leukemia). The selective cytotoxicity toward MCF-7 cells may be associated with greater intracellular levels of phosphoramidate monoester and/or phosphorylated AZT.
AZT phosphoramidate monoesters with aromatic amino acid methyl esters show greater cytotoxicity against MCF-7 breast cancer cells than their aliphatic analogues, suggesting potential for anti-breast cancer therapy.
Full text analysis coming soon...