Paper
Theories of Space-Time in Modern Physics
Published Apr 1, 2004 · Luciano Boi
Synthese
18
Citations
0
Influential Citations
Abstract
AbstractThe physicist's conception of space-time underwent two major upheavals thanks to the general theory of relativity and quantum mechanics. Both theories play a fundamental role in describing the same natural world, although at different scales. However, the inconsistency between them emerged clearly as the limitation of twentieth-century physics, so a more complete description of nature must encompass general relativity and quantum mechanics as well. The problem is a theorists' problem par excellence. Experiment provide little guide, and the inconsistency mentioned above is an important problem which clearly illustrates the intermingling of philosophical, mathematical, and physical thought. In fact, in order to unify general relativity with quantum field theory, it seems necessary to invent a new mathematical framework which will generalise Riemannian geometry and therefore our present conception of space and space-time. Contemporary developments in theoretical physics suggest that another revolution may be in progress, through which a new kind of geometry may enter physics, and space-time itself can be reinterpreted as an approximate, derived concept. The main purpose of this article is to show the great significance of space-time geometry in predetermining the laws which are supposed to govern the behaviour of matter, and further to support the thesis that matter itself can be built from geometry, in the sense that particles of matter as well as the other forces of nature emerges in the same way that gravity emerges from geometry. Scientific research is not a process of steady accumulation of absolute truths, which has culminated in present theories, but rather a much more dynamic kind of process in which there are no final theoretical concepts valid in unlimited domains. (David Bohm) The more we understand about the physical world, and deeper we probe into the laws of nature, the more we are driven into the world of mathematics and of mathematical concepts. (Roger Penrose)
Space-time geometry plays a crucial role in determining matter's behavior and may unify general relativity and quantum mechanics, suggesting a new mathematical framework may be necessary for a more complete description of nature.
Full text analysis coming soon...