Paper
Affective Visual Perception Using Machine Pareidolia of Facial Expressions
Published Oct 1, 2014 · Kenny Hong, S. Chalup, Robert A. R. King
IEEE Transactions on Affective Computing
11
Citations
0
Influential Citations
Abstract
This article presents a computer vision approach that can detect and classify abstract face-like patterns, including subliminal faces within a scene. This can be regarded as a way of simulating the phenomenon of pareidolia, that is, the tendency of humans to `see faces' in random structures such as clouds or rocks. The paper describes the system consisting of a component-based face detector and an expression classifier. The face detector creates a number of component images from the original image at different resolutions. A component image is a binary edge image where the edges are segmented into components using a labelling method with a border-following technique. The component images are then overlaid to produce a component height map where large and notable components across all resolutions have high values, while specular and noisy components have low values. The method retains three-shape components, representing two eyes and a mouth, that have height map values that are larger than the noise cut-off value. Support vector machines using scale-invariant feature vectors are applied for ranking these three-shape components by their geometry and size, and their shape semblance to human faces in the training data. The outcome is a facial expression analysis system that uses face components, with the potential to estimate an emotional expression value for a scene by producing an array of emotion scores corresponding to Ekman's seven Universal Facial Expressions of Emotion. An advantage of this technique, when compared to a holistic method, is that the face components are explicitly isolated. This supports a process of abstraction that can facilitate the detection of distorted and minimal face-like patterns.
Full text analysis coming soon...