Paper
Harnessing electronic health records for real-world evidence
Published Nov 29, 2022 · Jue Hou, R. Zhao, Jessica L. Gronsbell
2
Citations
0
Influential Citations
Abstract
While randomized controlled trials (RCTs) are the gold-standard for establishing the efficacy and safety of a medical treatment, real-world evidence (RWE) generated from real-world data (RWD) has been vital in post-approval monitoring and is being promoted for the regulatory process of experimental therapies. An emerging source of RWD is electronic health records (EHRs), which contain detailed information on patient care in both structured (e. g., diagnosis codes) and unstructured (e. g., clinical notes, images) form. Despite the granularity of the data available in EHRs, critical variables required to reliably assess the relationship between a treatment and clinical outcome can be challenging to extract. We provide an integrated data curation and modeling pipeline leveraging recent advances in natural language processing, computational phenotyping, modeling techniques with noisy data to address this fundamental challenge and accelerate the reliable use of EHRs for RWE, as well as the creation of digital twins. The proposed pipeline is highly automated for the task and includes guidance for deployment. Examples are also drawn from existing literature on EHR emulation of RCT and accompanied by our own studies with Mass General Brigham (MGB) EHR.
This paper presents an integrated data curation and modeling pipeline that utilizes natural language processing, computational phenotyping, and modeling techniques to extract critical variables from electronic health records for reliable real-world evidence and digital twin creation.
Full text analysis coming soon...