Paper
A Review of the Synthesis, Properties, and Applications of Bulk and Two-Dimensional Tin (II) Sulfide (SnS)
Published Feb 26, 2021 · Kane Norton, F. Alam, David J. Lewis
Applied Sciences
39
Citations
3
Influential Citations
Abstract
Tin(II) sulfide (SnS) is an attractive semiconductor for solar energy conversion in thin film devices due to its bandgap of around 1.3 eV in its orthorhombic polymorph, and a band gap energy of 1.5–1.7 eV for the cubic polymorph—both of which are commensurate with efficient light harvesting, combined with a high absorption coefficient (10−4 cm−1) across the NIR–visible region of the electromagnetic spectrum, leading to theoretical power conversion efficiencies >30%. The high natural abundance and a relative lack of toxicity of its constituent elements means that such devices could potentially be inexpensive, sustainable, and accessible to most nations. SnS exists in its orthorhombic form as a layer structure similar to black phosphorus; therefore, the bandgap energy can be tuned by thinning the material to nanoscale dimensions. These and other properties enable SnS applications in optoelectronic devices (photovoltaics, photodetectors), lithium- and sodium-ion batteries, and sensors among others with a significant potential for a variety of future applications. The synthetic routes, structural, optical and electronic properties as well as their applications (in particular photonic applications and energy storage) of bulk and 2D tin(II) sulfide are reviewed herein.
Tin(II) sulfide (SnS) offers efficient solar energy conversion, high absorption coefficient, and sustainable, accessible applications in optoelectronics, batteries, and sensors.
Sign up to use Study Snapshot
Consensus is limited without an account. Create an account or sign in to get more searches and use the Study Snapshot.
Full text analysis coming soon...