Paper
14-Deoxycoleon U-induced endoplasmic reticulum stress-mediated apoptosis, autophagy, and cell cycle arrest in lung adenocarcinoma
Published Jul 30, 2019 · Xiaozhi Peng, Yi-jun Tu, S. Fu
OncoTargets and therapy
4
Citations
0
Influential Citations
Abstract
Objective 14-Deoxycoleon U is a natural abietane-type diterpene and exerts an inhibitory effect on tumor cells proliferation, which suggests that 14-Deoxycoleon U may be a potent anti-cancerous lead compound for lung cancer treatment. This study was to evaluate potential of 14-Deoxycoleon U to treat lung adenocarcinoma in vitro and in vivo. Methods In the present study, the cell viability and apoptosis morphology of 14-Deoxycoleon U-treated A549 and LLC cells were explored using cell counting kit-8 assay and Hoechst 33258 staining. Then, the protein expressions about apoptosis, endoplasmic reticulum (ER) stress, autophagy and cell cycle were measured using Western blot. The autophagosome formation of 14-Deoxycoleon U-treated A549 cells was visualized using a confocal microscopy. LLC lung adenocarcinoma model was established. Results The results indicated that 14-Deoxycoleon U significantly inhibited A549 and LLC cell proliferation in a dose-dependent manner via caspase-dependent apoptosis. Furthermore, apoptosis of both cells was mediated by 14-Deoxycoleon U-induced ER stress. In addition, 14-Deoxycoleon U-induced A549 and LLC cell autophagy, thus promoting their death. Moreover, 14-Deoxycoleon U-induced cell cycle arrest in both cells via inhibition of cyclin D3, cyclin-dependent kinase 6, CDC2 and up-regulation of p21. In vivo results showed that administration of 14-Deoxycoleon U significantly suppressed LLC growth and adverse effects of 14-Deoxycoleon U on organs might be lower than of adriamycin. Conclusion Overall, our results demonstrated that 14-Deoxycoleon U represses in vitro and in vivo growth of lung adenocarcinoma through ER stress-mediated apoptosis accompanied by autophagy and cell cycle arrest.
14-Deoxycoleon U effectively suppresses lung adenocarcinoma growth in vitro and in vivo through ER stress-mediated apoptosis, autophagy, and cell cycle arrest.
Sign up to use Study Snapshot
Consensus is limited without an account. Create an account or sign in to get more searches and use the Study Snapshot.
Full text analysis coming soon...