Paper
Analogs of palmitoyl-CoA that are substrates for myristoyl-CoA:protein N-myristoyltransferase.
Published Nov 1, 1992 · D. Rudnick, T. Lu, E. Jackson-Machelski
Proceedings of the National Academy of Sciences of the United States of America
26
Citations
1
Influential Citations
Abstract
Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (Nmt1p; EC 2.3.1.97) is an essential enzyme that is highly selective for myristoyl-CoA in vivo. It is unclear why myristate (C14:0), a rare cellular fatty acid, has been selected for this covalent protein modification over more abundant fatty acids such as palmitate (C16:0), nor is it obvious how the enzyme's acyl-CoA binding site is able to discriminate between these two fatty acids. Introduction of a cis double bond between C5 and C6 of palmitate [(Z)-5-hexadecenoic acid] or a triple bond between C4 and C5 or C6 and C7 (Y4- and Y6-hexadecenoic acids) yields compounds that, when converted to their CoA derivatives, approach the activity of myristoyl-CoA as Nmt1p substrates in vitro. Kinetic studies of 42 C12-C18 fatty acids containing triple bonds, para-phenylene, or a 2,5-furyl group, as well as cis and trans double bonds, suggest that the geometry of the enzyme's acyl-CoA binding site requires that the acyl chain of active substrates assume a bent conformation in the vicinity of C5. Moreover, the distance between C1 and the bend appears to be a critical determinant for optimal positioning of the acyl-CoA in this binding site so that peptide substrates can subsequently bind in the sequential ordered bi-bi reaction mechanism. Identification of active, conformationally restricted analogs of palmitate offers an opportunity to "convert" wild-type or mutant Nmts to palmitoyltransferases so that they can deliver these C16 fatty acids to critical N-myristoylproteins in vivo. nmt181p contains a Gly-451-->Asp mutation, which causes a marked reduction in the enzyme's affinity for myristoyl-CoA. Strains of S. cerevisiae containing nmt1-181 exhibit temperature-sensitive myristic acid auxotrophy: their complete growth arrest at 37 degrees C is relieved when the medium is supplemented with 500 microM C14:0 but not with C16:0. The CoA derivatives of (Z)-5-hexadecenoic and Y6-hexadecynoic acids are as active substrates for the mutant enzyme as myristoyl-CoA at 24 degrees C. However, unlike C16:0, they produce growth arrest of nmt181p-producing cells at this "permissive" temperature, suggesting that these C16 fatty acids do not allow expression of the biological functions of essential S. cerevisiae N-myristoylproteins.
This study identifies active, conformationally restricted analogs of palmitate as substrates for myristoyl-CoA:protein N-myristoyltransferase, offering a potential method to "convert" wild-type or mutant Nmts to palmitoyltransferases
Sign up to use Study Snapshot
Consensus is limited without an account. Create an account or sign in to get more searches and use the Study Snapshot.
Full text analysis coming soon...