Paper
BayesGaze: A Bayesian Approach to Eye-Gaze Based Target Selection
Published May 1, 2021 · Zhi Li, Maozheng Zhao, Yifan Wang
Proceedings. Graphics Interface
11
Citations
1
Influential Citations
Abstract
Selecting targets accurately and quickly with eye-gaze input remains an open research question. In this paper, we introduce BayesGaze, a Bayesian approach of determining the selected target given an eye-gaze trajectory. This approach views each sampling point in an eye-gaze trajectory as a signal for selecting a target. It then uses the Bayes' theorem to calculate the posterior probability of selecting a target given a sampling point, and accumulates the posterior probabilities weighted by sampling interval to determine the selected target. The selection results are fed back to update the prior distribution of targets, which is modeled by a categorical distribution. Our investigation shows that BayesGaze improves target selection accuracy and speed over a dwell-based selection method, and the Center of Gravity Mapping (CM) method. Our research shows that both accumulating posterior and incorporating the prior are effective in improving the performance of eye-gaze based target selection.
Sign up to use Study Snapshot
Consensus is limited without an account. Create an account or sign in to get more searches and use the Study Snapshot.
Full text analysis coming soon...