Paper
Benzene-1,3,5-tricarboxamide: a versatile ordering moiety for supramolecular chemistry.
Published Aug 20, 2012 · S. Cantekin, T. D. de Greef, A. Palmans
Chemical Society reviews
317
Citations
2
Influential Citations
Abstract
After their first synthesis in 1915 by Curtius, benzene-1,3,5-tricarboxamides (BTAs) have become increasingly important in a wide range of scientific disciplines. Their simple structure and wide accessibility in combination with a detailed understanding of their supramolecular self-assembly behaviour allow full utilization of this versatile, supramolecular building block in applications ranging from nanotechnology to polymer processing and biomedical applications. While the opportunities in the former cases are connected to the self-assembly of BTAs into one-dimensional, nanometer-sized rod like structures stabilised by threefold H-bonding, their multivalent nature drives applications in the biomedical field. This review summarises the different types of BTAs that appeared in the recent literature and the applications they have been evaluated in. Currently, the first commercial applications of BTAs are emerging. The adaptable nature of this multipurpose building block promises a bright future.
Benzene-1,3,5-tricarboxamides (BTAs) are versatile supramolecular building blocks with applications in nanotechnology, polymer processing, and biomedicine, with potential for commercial applications.
Sign up to use Study Snapshot
Consensus is limited without an account. Create an account or sign in to get more searches and use the Study Snapshot.
Full text analysis coming soon...