Paper
Design and synthesis of pyrrolidine-5,5-trans-lactams (5-oxo-hexahydro-pyrrolo[3,2-b]pyrroles) as novel mechanism-based inhibitors of human cytomegalovirus protease. 1. The alpha-methyl-trans-lactam template.
Published Nov 16, 2000 · A. D. Borthwick, S. Jane Angier, A. Crame
Journal of medicinal chemistry
38
Citations
0
Influential Citations
Abstract
Mechanism-based inhibitors of human cytomegalovirus (HCMV) protease have been designed based on the pyrrolidine-5,5-trans-lactam ring system. New routes to the beta-methyl-, desmethyl-, and alpha-methyl-pyrrolidine-5,5-trans-lactam templates have been developed from 2,4-diaminobutyric acid. ESI/MS studies have shown that these inhibitors can bind covalently and reversibly to the viral enzyme in a time-dependent manner by a mechanism which is consistent with acylation of HCMV deltaAla protease at the active site nucleophile Ser 132. SAR in this series of pyrrolidine-5, 5-trans-lactams has defined the relative stereochemisty of the methyl substituent adjacent to the lactam carbonyl, the functionality on the lactam nitrogen, and the mechanism of action of this novel series of serine protease inhibitors against the HCMV deltaAla protease. Activity decreases on moving from the alpha-methyl to the desmethyl to the beta-methyl series. This selectivity is the opposite of that observed for these templates against the elastase and thrombin enzymes. The activity against HCMV deltaAla protease is the greatest with inhibitors based on the Cbz-protected alpha-methyl-5,5-trans-lactam template which have low micromolar activity against the viral enzyme.
The pyrrolidine-5,5-trans-lactams show potential as novel inhibitors of human cytomegalovirus protease, with the greatest activity against deltaAla protease being achieved with the Cbz-protected alpha-methyl-5,5-trans-lactam
Sign up to use Study Snapshot
Consensus is limited without an account. Create an account or sign in to get more searches and use the Study Snapshot.
Full text analysis coming soon...