Paper
Evidence for electrophilic catalysis in the 4-chlorobenzoyl-CoA dehalogenase reaction: UV, Raman, and 13C-NMR spectral studies of dehalogenase complexes of benzoyl-CoA adducts.
Published Oct 24, 1995 · Kimberly L. Taylor, Rui-Qin Liu, Po-Huang Liang
Biochemistry
24
Citations
0
Influential Citations
Abstract
This paper reports on the mechanism of substrate activation by the enzyme 4-chlorobenzoyl coenzyme A dehalogenase. This enzyme catalyzes the hydrolytic dehalogenation of 4-chlorobenzoyl coenzyme A (4-CBA-CoA) to form 4-hydroxybenzoyl coenzyme A (4-HBA-CoA). The mechanism of this reaction is known to involve attack of an active site carboxylate (Asp or Glu side chain) at C(4) of the substrate benzoyl ring to form a Meisenheimer complex. Loss of chloride ion from this intermediate results in the formation of an arylated enzyme intermediate. The arylated enzyme is hydrolyzed to free enzyme plus 4-HBA-CoA by the addition of water at the acyl carbon [Yang, G., Liang, P.-H., & Dunaway-Mariano, D. (1994) Biochemistry 33, 8527]. The present studies have focused on the activation of the 4-CBA-CoA for nucleophilic attack by the active site carboxylate group. UV-visible, 13C-NMR, and Raman spectroscopic techniques were used to monitor changes in the distribution of the pi electrons of the benzoyl moiety of benzoyl-CoA adducts [substituted at C(4) with methyl (4-MeBA-CoA), methoxy (4-MeOBA-CoA), or hydroxyl (4-HBA-CoA) groups or at C(2) or C(3) with a hydroxyl group (2-HBA-CoA and 3-HBA-CoA)] resulting from the binding of these ligands to the dehalogenase active site. The UV-visible spectra measured for 4-HBA-CoA in aqueous buffer at pH 7.5 and in the dehalogenase active site revealed that a large red shift (from 292 to 373 nm) in the lambda max of the benzoyl moiety occurs upon binding.(ABSTRACT TRUNCATED AT 250 WORDS)
The enzyme 4-chlorobenzoyl-CoA dehalogenase uses electrophilic catalysis to activate substrates, leading to the formation of 4-HBA-CoA and the hydrolytic dehalogenation of 4-CBA-CoA to 4-HBA-CoA.
Sign up to use Study Snapshot
Consensus is limited without an account. Create an account or sign in to get more searches and use the Study Snapshot.
Full text analysis coming soon...