Paper
Structure-activity relationship and molecular mechanisms of ethyl 2-amino-4-(2-ethoxy-2-oxoethyl)-6-phenyl-4h-chromene-3-carboxylate (sha 14-1) and its analogues.
Published Sep 10, 2009 · S. Das, Jignesh M. Doshi, Defeng Tian
Journal of medicinal chemistry
65
Citations
1
Influential Citations
Abstract
Rapid development of multiple drug resistance against current therapies is a major barrier in the treatment of cancer. Therefore, anticancer agents that can overcome acquired drug resistance in cancer cells are of great importance. Previously, we have demonstrated that ethyl 2-amino-4-(2-ethoxy-2-oxoethyl)-6-phenyl-4H-chromene-3-carboxylate (5a, sHA 14-1), a stable analogue of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (6, HA 14-1), mitigates drug resistance and synergizes with a variety of cancer therapies in leukemia cells. Structure-activity relationship (SAR) studies of 5a guided the development of ethyl 2-amino-6-(3',5'-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (5q, CXL017), a compound with low micromolar cytotoxicity against a wide-range of hematologic and solid tumor cells. More excitingly, our studies of 5q in camptothecin (CCRF-CEM/C2) and mitoxantrone (HL-60/MX2) resistant cancer cells highlight its ability to selectively kill drug-resistant cells over parent cancer cells. 5q inhibits tumor cell growth through the induction of apoptosis, with detailed mechanism of its selectivity toward drug-resistant cancer cells under investigation. These results suggest that 5q is a promising candidate for treatment of cancers with multiple drug resistance.
5q, a promising anticancer agent, selectively kills drug-resistant cancer cells and inhibits tumor cell growth through apoptosis, offering a promising treatment option for multiple drug-resistant cancers.
Sign up to use Study Snapshot
Consensus is limited without an account. Create an account or sign in to get more searches and use the Study Snapshot.
Full text analysis coming soon...