Paper
Synthesis of 4-nitrophenyl beta-D-fucofuranoside and beta-D-fucofuranosyl-(1-->3)-D-mannopyranose: modified substrates for studies on catalytic requirements of beta-D-galactofuranosidase.
Published 2000 ยท A. Chiocconi, C. Marino, R. D. de Lederkremer
Carbohydrate research
0
Citations
0
Influential Citations
Abstract
Syntheses of 4-nitrophenyl beta-D-fucofuranoside (6) and beta-D-fucofuranosyl-(1-->3)-D-mannopyranose (10) are reported. These compounds, as analogues of galactofuranosides, were used for studying the influence of the hydroxyl group at C-6 in the interaction of the substrate with beta-D-galactofuranosidase. For the synthesis of the fucofuranosides, 2,3,5-tri-O-benzoyl-6-bromo-6-deoxy-D-galactono-1,4-lactone (1) was the key intermediate, which upon reduction of the lactone group with diisoamylborane, acetylation of the anomeric hydroxyl group, and catalytic hydrogenolysis of the bromine at C-6, led to 1-O-acetyl-2,3,5-tri-O-benzoyl-alpha,beta-D-fucofuranose (4), a convenient derivative for the preparation of fucofuranosides. Compound 4 was glycosylated in the presence of SnCl4, either with 4-nitrophenol for the preparation of 6, or with 2,5,6-tri-O-benzoyl-D-mannono-1,4-lactone (7), for the synthesis of disaccharide 10, via the glycosyl-aldonolactone approach. The synthetic route developed for the beta-D-fucofuranosides is simple and efficient. Compound 6 was not hydrolyzed by incubation with the exo beta-D-galactofuranosidase from Penicillium fellutanum, showing that HO-6 is essential for interaction of the substrate with the enzyme.
The synthetic route for 4-nitrophenyl beta-D-fucofuranoside and beta-D-fucofuranosyl-(1-->3)-D-mannopyranose is efficient and shows that HO-6 is essential for substrate interaction with beta-D-galactofuranos
Sign up to use Study Snapshot
Consensus is limited without an account. Create an account or sign in to get more searches and use the Study Snapshot.
Full text analysis coming soon...